Extensions 1→N→G→Q→1 with N=C32×Dic3 and Q=C4

Direct product G=N×Q with N=C32×Dic3 and Q=C4
dρLabelID
Dic3×C3×C12144Dic3xC3xC12432,471

Semidirect products G=N:Q with N=C32×Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C32×Dic3)⋊1C4 = Dic3×C32⋊C4φ: C4/C1C4 ⊆ Out C32×Dic3488-(C3^2xDic3):1C4432,567
(C32×Dic3)⋊2C4 = C33⋊(C4⋊C4)φ: C4/C1C4 ⊆ Out C32×Dic3488-(C3^2xDic3):2C4432,569
(C32×Dic3)⋊3C4 = C62.80D6φ: C4/C2C2 ⊆ Out C32×Dic3144(C3^2xDic3):3C4432,452
(C32×Dic3)⋊4C4 = C3×Dic3⋊Dic3φ: C4/C2C2 ⊆ Out C32×Dic348(C3^2xDic3):4C4432,428
(C32×Dic3)⋊5C4 = C3×Dic32φ: C4/C2C2 ⊆ Out C32×Dic348(C3^2xDic3):5C4432,425
(C32×Dic3)⋊6C4 = Dic3×C3⋊Dic3φ: C4/C2C2 ⊆ Out C32×Dic3144(C3^2xDic3):6C4432,448
(C32×Dic3)⋊7C4 = C32×Dic3⋊C4φ: C4/C2C2 ⊆ Out C32×Dic3144(C3^2xDic3):7C4432,472

Non-split extensions G=N.Q with N=C32×Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C32×Dic3).1C4 = C335(C2×C8)φ: C4/C1C4 ⊆ Out C32×Dic3248+(C3^2xDic3).1C4432,571
(C32×Dic3).2C4 = C332M4(2)φ: C4/C1C4 ⊆ Out C32×Dic3248+(C3^2xDic3).2C4432,573
(C32×Dic3).3C4 = C337M4(2)φ: C4/C2C2 ⊆ Out C32×Dic3144(C3^2xDic3).3C4432,433
(C32×Dic3).4C4 = C3×D6.Dic3φ: C4/C2C2 ⊆ Out C32×Dic3484(C3^2xDic3).4C4432,416
(C32×Dic3).5C4 = C3×S3×C3⋊C8φ: C4/C2C2 ⊆ Out C32×Dic3484(C3^2xDic3).5C4432,414
(C32×Dic3).6C4 = S3×C324C8φ: C4/C2C2 ⊆ Out C32×Dic3144(C3^2xDic3).6C4432,430
(C32×Dic3).7C4 = C32×C8⋊S3φ: C4/C2C2 ⊆ Out C32×Dic3144(C3^2xDic3).7C4432,465
(C32×Dic3).8C4 = S3×C3×C24φ: trivial image144(C3^2xDic3).8C4432,464

׿
×
𝔽